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ABSTRACT

The transformation of earthquake body waves to T waves is as
efficient at deep slopes as at slopes which transect the sofar
axis. Moreover, spectral studies of T phase signatures have
shown no basis for distinguishing between the two cases. Aa
simple downslcpe propagation is inadequate to explain the
production of T waver at deep slopes, that process is relegated a
miinor role in favor of scattering from the sea floor as the
dominant mechanism. A slope in the direction of propagation
insures that once energy is scattered in that direction the
probability of its being unfavorably rescattered upon successive
approaches to the sea floor will be less. Scattering near the
sea surface is detectable in the absence of bottom-scattered
T waves. Such abyssally generated T waves display a distinctly
higher frequency spectrum when originating in subarctic regions
than when originating in lower latitudes. This difference i
sscribed to downward ducting of higher frequency energy from the

subarctic surface channel.
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INTRODUCTION

A widely recognized gap in extant hypotheses for the geueration
of T waves is the explanation of the strong signals recefved from
the Eagt Pacific Rigse. There the ocean is too deep to support the
production of sofar rays by downslope propagati~n. The T phases
received, h wever, ... m:'e those generated at shallow slopes much
more closely than those generated at abyssal depths (i.e., in close
proximity to trenches). A second prcblem is the ohserved difference
between the spectrum of abyssal T wave: generated in the subarctic
and that of T waves from lower latitudes. In order to resolve these
problems a stucy has been conducted of sonagrams (intensity level
contoured in the frequency-time plane) of T phases from over 400

earthquakes cccurring all around the Pacific.

BAGKGROUND

Tolstoy and Ewing (1950) recognized the importance of a sloping
bottom in the production of T waves. The sp.cific mechanism of
multiple reflection between the sea surface and its downsloping
bottom (downslope propagation) was first detailed by Milne (1959).
Johnson et al. (1963) showed that, for a 10° slope and an acouctic
profile typical of the Aleutians, the downslope propagation process
would produce sound chanrel rays only if the rays entered the water

at depths of less than about 500 meters. For RSR (refracted

surface-reflected) rays this limiting depth is perhaps doubled.
Although T waves criginating over ocean trenches have been observed,
their spectral and time-varying characteristics differ markedly from
slope T waves and & generative mechanism involving scattering at the
sea surface has been proposed (Johnson et al,, 1968). These authors
noted, howeve., that T phases originating along the East Pacific

Rise display the low-frequency spectrum of slope T phases, yet the
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waves cannot be accounted for by dounalope propagation. Cuoke
(1967) also recognized this predicament. It {s necessary, thén.
to modify the hypothesis for slope T-phase generation to fv "'~

T phases generated at deeper slopes.

DATA

The data presented in the appendix to this report are
sonagrams made from over 400 earthquake T phases tape-recorded
from sound-channel hydrophones of the Pacific Missile Range at
Oahu, Midway, Wake, and Eniwetok islands. Tapes were ordered for
analysis if the paper-drum recordings from the stations contained
T phases from earthquakes which were identified by the U. S.
Coast and Geodetic Survey (C&GS) preliminary determination of
epicenter cards as being from abyssal regions or from an earthquake
of magnitude 6 or greater. In processing the tapes, every T phase
generated by an earthquake identified by the C&GS was sonasgrammed
irrespective of magnitude or region. No attempt vas made to
compensate for the response of the hydrophone-cable-amplifier systems,
although their characteristics vary from installation to installation

and systematic spectral differences are thereby introduced.

DEEP-SLOPE T WAVES

A verifiction that T waves are ind 'd radiated from deep
slopes i{s illustrated by a sequence ot earthquakes which occurred
off northern Honshu {n June 1968. The foci of four of the earthquakes
are shown in Figure 1 as well as the focus of nﬁ earthquake farther
offshore. The source data are listed in Table I. Figuve 2

presents the sonagrams of the corresponding T phases. (Frequency
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Fig. 1. The foci of five carthquakes off northern Honshu shown both in
plan (upper) and elevation (lower). Bottom contours ave in fathoms.
Source data are listed in Table I and sonagrams are presented in
Figure 2. The bathymetry along saction A-A' is showr both true
scale and with 20X vertical exsggeration.
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Table I. Source Data for Events Shown in Figure 1.
Selected Off-Honshu Earthquakes
Event Lat., Long., Depth, Mag., Date, Gfr,
°N *E km M, d m y h =a s
a 39.5 1°2.4 33 4.1 18 Jun 68 13 38 01
b 39.5 143.1 33 4.3 12 Jun 68 17 23 18
c 39.3  143.0 30 5.1 12 Jun 68 15 48 59.5
d 39.5 143.0 34 4.5 26 Jun 68 20 26 19.0
e 40.2 144.6 27 5.0 24 Mar 67 04 11 29.6

range: 0 to 50 h:, bottom to top on all sonagrams in this report.)
Event (a) ia characteristic of slope T phases while event (e)
generated both an abyssal and a slope T phase at a spacing
sppropriste for the distance of the epicenter froam the continental
shelf,

groups of T waves, each of which is appropriatsly spaced for the

Likewise, events (b), (c), and (d) also genrrated two

distance of the epicenter from the shelf. In cases (b), (c), snd
(d), however, the firet group of waves lacks the identifying
characteristices of an abyssal T phase, the only notable distinction
from the second group being the inclusion of higher frequencies.
The water depth at epicentars (b), (c), and (d) was about 2000
weters vith a bottom slope of one to two degrees. These conditions
are clearly insufficient to produce even RSR rays by downslope
propagation over a smooth bottom (Aubrat, 1962).

In €fact, however, continental and i{sland slopes sre not
smooth, but are cut by submarine canyons and crossed by fault
scarps vhich serve to scatter acoustic energy upon initial
refraction into the water as well as during multiple reflection

vithir ‘he water vedge. This scattering materially reduces the
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length of slope required to produce horizontal r.yi. _ _

The scattering mechanism is equally opersble at lhdlﬁ nlop-
and must equally cause the production of shallow-slope T waves.
The shallow-slope T phases may be slightly stronger at the lowe:r
frequencies however, since lor or wavelengths, which are not as
readily scattered, can be deflected into horizontal paths by the
lerzth of a slope cvailable. The lack of higher frequency energy
for the gshallow-slope T phases shown in Figure 2 is ascribable to
att:nuation over the longer ground p-th. This variation of low-
frequency content with vater depth was recognized By Duennebier
(1968) as a decrease of peak frequency with time over the early
portions of slope T phases fram the Fox Islands.

Computed sources of slope T phases have been found to form
clusters indicative of topographically comtrsiied sites of strong
radiation (Johnson and Norris, 1968a; Duennebier and Jchnson,
1967). By contrast, abyssal T-phase sources appear to radiate
most strongly from the earthquake epicenter. The excitation of
a uniform scattering horizon is inferred from the very gradual
onset and decay ratea of abyssal T waves. The onset and decay
rates of deep-slope T waves are practically identical with those
of shallow-slope T waves, suggesting s similar topographic control
of radiation. The lack of any basis for distinction between the
tvo groups of signals is readily apparent ir Figure 3, wvhich
contains a selection of sonagrams from earthquakes along the East

Pacific Rise as well as & selection of shaliow-slope T wsves

(Table 1I).

The mechanisa and conditions for generation of deep-slope
T vaves also apply to T waves from the East Pacific Rise. Although
here the sverage slope is much more gradual than at the margins of
the Pacific, the topcyrapny is characteristically faulted, the
faults app.rently bein‘; in close associatica with earthquake
epicenters. Such fasult scarps, then, -t once provide the

L e

[ U



e A st o AT

SRRy TNy G VSN

FIG. 3. Selected sonagramis of T phases from the East Pacific Rise (on
phases (on the right) . Source data are listed in Table IT.
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Tsble II. Source Deta for Events Shown in Figure 3.

Selected East Pacific Rise Earthquakes (Fiz. 3, left)

Event Lat. 1long., Depth, Mag., Dsate, | oMT,

W ke M, d w y h = s
& 4428 128.8 33 5.6 28 Dec 67 06 26 15.8
b 42,95  126.2 33 4.9 26 Sep 67 05 51 11
c 2.6 101.8 33 4.9 28 Mar 68 12 44 38.0
d 2.1 101.] 33 4.7 30 Dec 67 02 46 55
e 4.08 104.1 33 4.5 16 Jun 68 14 01 22
£ 32.88 111.7 33 5.4 29 Dec 66 22 16 22.7
8 54.85 136.0 33 5.4 9 Sep 67 16 52 01.3

Selected Shallow-Slope T Phases (Fig. 3, right)

h 40.6N 125.0 33 4.4 17 Jun 68 03 05 44
1 40.5N  124.5 5 5.8 10 Dec 67 12 06 50.3
3 37.08  121.0 11 5.0 18 Dec 67 17 24 31.9
k 20.0S  70.3 60 4.6 8 Nov 67 10 47 45.3
1 21.58  70.4 53 5.8 25 Dec 67 10 41 31.6

scattering facets and the localized radiators for deep-s'npe

T wave generati

on.

T-phase strength offers no basis for distinguishing between

deep-slope and shallow-slope T phases.
Ridge (Northrop et al., 1968)--which is well oelow the sofar axis-~

T phases from the Gorda

are at least ss strong, relative to earthquake magnitude, as slope

T phases from the Aleutian Ridge (Johnson and Northrop, 1966;
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Séhﬁpqﬁ ad Porria, 1960a). Deep-iuwwed-uciwsocunder profiles ol
;.thp'hofdl'ﬁidge indicate faulted blrcks with scarps dipping at
30-dagree angles (Atwater and Mudie, 1968). Such rugged terrain
ptoﬁiﬁly sccounts for strong T-wave generation.

.T phases originating along southern portions of the East
Pacific Rise are equally as strong as those from the Gorda Ridge.
Here the relief along the crést of the rise is more subdued,
however earthquake epicenters are found to lie principally along
the steep-sided fracture zones which offset the rise (Menard,
1966; Sykes, 1963). °

Duennebier (1968), in describing an Eniwetok hydrophone
recording of a magnitude 6.2 earthquake under the Mariana Ridge,
states that energy was continuously received at the hydrophone
from the time of the P phase arrival until after the arrival of
the slope T phase from the Mariana Ridge. Strong signals were
received at intermediate times, corresponding to P-wave travel
to intervening seamounts followed by T-wave travel tc the hydro-

phone. Although, as Duennebier points out, the tops of these

seamounts are well below the sofar axis, such steep slopes ’
(Robertson and Kibblewhite, 1966) may be expected to radiate ;
T waves into RSR and off-axis sofar paths with relative efficiency.

Two earthquakes from the North Pacific Basin have their foci f
(Table III) under the newly discovered Emperor Fracture Zone :
(Erickson et al., 1970). Here, the bottom is characterized by
irregular ridges and troughs with elevations no more than 1 km
above the regional level. Since all depths in the epicentral region
are greater than the bottom of the sofar channel, only RSR and
multiply reflecting rays can be generated by scatter at the sea
floor. The T phases recorded at Midway (Figure 4a and b) show the
characteristic broad spectrum of such bottom-scat!t 1 waves, but in
additjon they show the gradual onset and decay that is suggestive of
a uniform scattering horizon. This effect may be due to the

alignment of the topography with the direction to Midway or the
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FIG. 4. Sonagrams of T phases from earthquakes under the decp-ocean floor. Source data are listed in Table I
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result of the superposition of nsar-surface scattared {sbyssal’
T waves upon bottom-scattered waves.

Table III. Source Data for Events Shown in Figure 4.

Event Lat. Long. Depth, Mag., Date, GMT,
km M d m y h =n

a 44.88 174.5E 39 5.5 28 Apr 63 04 18 15.7
b 44.8N 174.7E 3 4.3 28 Apr 68 06 23 02
c 12.08  130.8W 33 5.3 24 Sep 66 08 57 10.2

Pigure 4c shows another Pacific Basin T phase wi:h its focus
(Table IIX) under the less well-chartei ocean floor between Clarion
and Clipperton fracture zones. The low strength of this T phase,
relative to the earthquake magnitude, suggests a lack of topogruhic
relief in the epicentral region.

PROPAGATION OF DEEP-SLOPE T WAVES

RSR paths exist when the speed of sound in the bottom water
is greater than it is at the surface. This condition is easily mat
in higher latitudes where the surface water is cold; but in the
tropical and sub-tropical Pacific, extistence of the conditica
depends strongly on water depth. Frca about 45°N .. 40°S the East
Pacific Rise is too shallow to permit RSR propagation. Within this
region such sound ecnergy as is scattered clear of a sloping bottom
wiil enter the sofar channel as off-axis rays. At higher latitudes
proportionately more energy will be scattered into initialiy RSR
paths. Such paths may become totally refracted sofar paths upon
entering regions of warmer surface water.

Unattenuated propagation by totally reflecting paths (normal
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mode) 1s thorctically possible in a constant-depth ocemmn. However,
1¢ bottom scattering is an acceptable mechenism for siope T-wave
pmeration, a contimuation of that scattering over the travel path
would nilitate sgainst propagation--by normal mode-~to significamt
distances. The very low frequencies at which sound may be effec~
tively propagated by bottom-reflecting normsli mode in the deep
ocean are beyond the sensing range of presently installed hydro-
phones. '

In computing T-phase source locations, it has baen assumad
that the most intense arrival travels at sofar-sxis sound speed
(Johnson, 1966). As no ncar-axis sofar rays are generated by the
proposed deep-slope T-wave mechanism, a somevhat higher apparent
souad speed would be sppropriaste to such cases. For example, in
the vicinity of Midway, the sofar ray which is horizontal at »
3000-mster depth has an spparent speed that is 0.32 higher than the
speed of the scfar axis ray. Such a difference in speed would
produce about an ‘%-second arrival-time difference over the path
from the tropical Eas: Pacific Rise to Midvay. This would corre-
spond to a source location difference of .25°. The simple, sharply
peaked simnature of Zast Pacific Rise T phases should readily
allow the detection of such a discrepancy were the epicenter known
vith sufficient accuracy. Such is not likely to be the case in this
remote region of the Pacific, however.

ABYSSAL T WAVES

Situations vhere the bottow cannot scatter energy intc RSR or
sofar paths occur vhere the ocean finor is level or at a greater
depth than adjacent sreas in the direction of the receiver. Johnson
et al. (1968) detected T waves from such regions in the subarctic
Pacific and termed them "abyssally generated”. The signals were
characterized by very gradusl onset, a lack of low frequencies, ~~d

= e e ace -
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a lov strength relative to earthquake magnitude. They mﬂy
sppear as the forerunner of a slope-gencrated T phase (Mcr.
1968) .

Por Pacific earthquakes in lower latitudes, the forerunmere, =
vhich msy commence at the time for direct P-wave arrival, show no
percaptible difference in spectrum from the slope arrivals.

Mgure 5 illustrates this contrast between the forerunners of
subarctic and lower latitude T phases (source data listed in Table
IV). As previously noted, the occasional intensification of

Table IV. Source Data for Bvents Shown in Pigure 5.

Event Lat. Long. Depth, Mag., Date, GMT,

km M, d m y h = s
a  S0.68 171L.3W 39 6.5 7 Aug 66 02 13 05.1
b 4438 ISLLJE 26 5.8 7 Dec 66 17 17 42.0
¢  60.88 143.2E 07 7.9 16 May 68 00 48 55.&
d  27.88  144.3E 40 4.6 6 Feb. 64 08 00 35.0
e 20,8 146.3E 43 6.2 10 Peb 66 14 21 10.9
£ 18.4N 146.5E 77 5.0 20 Jan 68 20 06 48.0
8 7.15  BL.6W 23 6.5 29 Aug 63 15 30 31.4

signal strength in the lower latitude events msy be s:counted for

by radiation from intervening seamounts. However, aven the

continuous portion of the lower latitude forerunners has essentially

the same frequency distribution as the slope T waves that follow.
The most distinctive acoustic feature of subarctic (and arctic)

waters is the absance of a deep sound channel (Johnson and Norris,

1968b) . Althcugh a shallow, subsurface, velocity minimum may

exist in summer, propagation is predominantly RSR. Kutschale (1961)

found that explosion signals which propsgated through the Arctic

Ocean exhibited a dispersion of frequencies vhich was nicely
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~ explained by normai-mode theory. For a given mode, higher fre-
rt‘qu-ncy energy is concentrated nearer the surface and propagates
it a corr=gpondingly lower group velocity.

Upon entering a region with warmmer surface water, shallower
RSR rays tocome sofar rays. This ducting of higher frequency
energy into the sofar channel, which occurs over paths to the PMR
hydrophones from the subarctic but not from the Mariana or
gsouthern Japan trenches, mav therefore partially explain the
spectral differences ii. abyssal T waves.

The appearance of a low-frequency cutoff on sonagrams of many
subarctic abyssal T phases (Fig. 5) strongly suggests that their
initial propagation is confined to a surface layer. According to
Kibblewhite and Denhsm (1965), the miniwum duct-depth L for
trapping any wmodes for frequency f is

L = 0.5 co (£2g)-1/3

where cy is sound speed at the surface and x is a constant gradient
of speed. Figure 6 is a graph ot this equation for c; = 1460 m sec~l
and g = 0.014 sec~l . 1f 10 hz is taken as a typical low-cutoff
frequency, it is seen that subarctic abyssal T waves are ducted
wvithin at least the upper 700 meters of water. The absence of
lower frequencies must be ascribed to the absence of significant
large-dimensioned scatterers at sufficient depth to excite antinodes
for sound pressure for lover frequencies. At lower latitudes,
scattering in wuch of this 700-meter layer, as from a rough themmo-
cline, will occur within the sofar channel. Here the interference
patterns of normal-mode propegation are not conditioned by a surface
boundary and depths of antinodes arc indetetminate. This mav
sccount for the lowver frequencies of T-phase forerunners from the
region of the Mariana and southern lapan trenches, although, alter-
natively, the sbundance of seamounts cve~ the paths from that region
say be iesponsible.

The fact that elofe T phases fros the subarctic contain fre-
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quencies which are lower than those of their sbyssally generated
forerunners indicates excitation of RSR normal modes at greater
deprhs. Neerly all of such energy will slso be ducted into the

sofar chamnel upon entering regions of warmer su.{ace water.

CONCLUSION

Earthquakes under deep slopes generate T phases as
efficiently as earthquakes under shallow slopes. In either case
the short onset and decay rates indicate that the T waves are
produced at radiators of restricted dimensions. In contrast,
abyssal T phases, which are produced in the vicinity of trenches
or over the flat ocean floor, show onset and decay rates for which
a uniform scattering horizon is indicated. The production of T
vaves at a sloping bottom is ascribed to scattering from the
bottom, either init!-!ly or in the course of multiple reflection
within the wvater wedpe,

Deep~slope T waves generated within the Central Pacific
follow off-axis sofar paths. This hypothesis may be tested by
caomparing observed and predicted arrival times at Midway, with
those at Wake, or at Eniwetok, from accurately located sources
aslong the East Pacific Rise.

Abyassal T waves from the subarctic region are of distinctly
higher frequencies than are abyssal T waves ‘rom lower latitudes.
This difference is ascribed to downward ducting of higher frequeacy

energy from the subarctic surface channel.
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APPENDIX

The order of the sonagrams presented here is b; geographiz locatiom
starting on the Eas ™acific Rise and proceeding a« diagrasmed ou the map
on the facing page. Page numbers agre written bv segmens of the position
Yine,

The annotation of sonagrams, with few excaptions, is the annotatiov
used on C&GS Preliminary Determination of Epicenters cards. Some events
which were not located by C&GS but by hydrcphone petwork are marked by a

dagger and annctated in the form used in tuse HIG T-Phase Source Locatiouns.
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Hydrophones at Oashu, Midwey, Wake, and Enivetok are numbered in the 10's,
20's, 30's, and 40's, respectively.

The sonagrams display relative intensity contoured in the frequency-time
plane. They have an intensity range of 42 db (seven & db cortours). Frequen-
cies range, vertically, from 0 to 50 hz. The durstion of & single soragram

ig 5.4 minutes.
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